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Abstract
The Marumori–Yamamura–Tokunga boson expansion is used to describe
multiboson processes. The reliability of the time evolution predicted by
generalized coherent states has been investigated numerically by comparing
its dynamics with the exact one. A link between the generalized coherent
states and deformed bosons is established.

PACS numbers: 02.20.−a, 05.30.Jp

1. Introduction

A mapping, defined in the framework of the Marumori–Yamamura–Tokunga (MYT) boson
expansion [1], from a ‘physical’ boson space onto a ‘model’ boson space, was proposed in [2]
to describe multiphonon processes, such as multiphonon absorption or emission. In particular,
a multiboson coherent state adequate to be used as a trial function in the time-dependent
variational method, was introduced. The new coherent state has the form of the extended
coherent states discussed in [3], and in fact can be interpreted in terms of the deformed boson
scheme [2, 4–7]. The same generalized coherent states have been applied to the Lipkin
model [8].

In the present paper we test the MYT boson mapping and the proposed generalized
coherent states by studying the time evolution of a system given in terms of a schematic model
appropriate to describe the coupling between different kinds of bosons. In particular, we are
interested in describing the decay of a collective state into a multiboson state. We will test
the original Glauber coherent state, the generalized coherent state introduced in [2], as well as
two other coherent states which, by construction, possess a conserved quantity of the system,
namely the number of particles: the SU(2) coherent [9] and a generalized version.

We will show that the new bosons obtained within the MYT scheme are equivalent to
the introduction of deformed bosons. Recently, the MYT boson expansion generated by
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q-deformed boson operators which obey the quon-algebra has been applied to study different
Hamiltonians [6].

This paper is organized as follows: in section 2 the Hamiltoninan in the new boson space is
calculated using the MYT boson expansion method, then the classical analogue is calculated
using Glauber coherent states, the generalized coherent states are introduced in section 4,
afterwards we show that the formalism is equivalent to using deformed bosons and finally we
present some numerical results and draw some conclusions.

2. The Hamiltonian in the new space

Sometimes, in physical systems, a highly anharmonic coupling between distinct degrees of
freedom occurs and is responsible for remarkable effects. For instance, the excitation of a giant
resonance in a heavy nucleus may induce its fission. The mechanism responsible for such a
process is obviously related to energy transfer from the giant resonance degree of freedom to
the fission degree of freedom. In order to better understand similar physical mechanisms it
may be interesting to investigate the dynamics determined by Hamiltonians of the form

Ĥ = ωĉ†ĉ + �b̂†b̂ + g(ĉ†b̂n + b̂†nĉ) (1)

where ĉ and b̂ are boson operators: [ĉ, ĉ†] = 1, [b̂, b̂†] = 1, [ĉ, b̂] = 0, etc. We assume
that ω = n�. Since [(ωĉ†ĉ + �b̂†b̂), ĉ†b̂n] = (ω − n�)ĉ†b̂n, this condition ensures that
the unperturbed part of the Hamiltonian commutes with the perturbation, being a conserved
quantity. The coupling between both degrees of freedom has most dramatic effects, because
the energy is more freely exchanged between them.

Let |0) be the vacuum associated with the boson operators b̂†, b̂. The subspace spanned
by the kets 1√

(kn)!l!
b̂†knĉ†l|0), k, l = 0, 1, . . . ,∞ is left invariant by the Hamiltonian (1). In

this subspace, the operator b̂n behaves, essentially, as a single boson operator d. The MYT
boson expansion was originally devised as a method to consistently replace a fermion pair
by a single boson, but its basic idea can be applied in the present case. The MYT boson
expansion is a mapping from vectors and operators referring to some physical system (in our
case the bosons b) into vectors and operators referring to the auxiliary system (the bosons d),
under the important requirement that operator matrix elements are preserved. This method
allows us to express the operator b̂†n, b̂n in terms of the operators d̂†, d̂ . We denote by |0〉
the vacuum associated with d̂†, d̂ . The ket 1√

(kn)!
b̂†kn|0) is mapped into the ket 1√

k!
d̂†k|0〉.

The image of the operator b†n is an operator d̂†f (d̂†d̂) which has the same matrix elements
between corresponding states. This requirement leads to the condition

(0| 1√
((k + 1)n)!

b(k+1)n(b†n)
1√

(kn)!
b†kn|0) = 〈0| 1√

(k + 1)!
d̂k+1(d̂†)f (d̂†d̂)

1√
k!

d̂†k|0〉

so that
((k + 1)n)!√

((k + 1)n)!
√

(kn)!
= (k + 1)!f (k)√

(k + 1)!
√

k!
.

Thus

f (k) =
√

(kn + 1) · · · (kn + n)√
k + 1

.

Let

Fn(k) = f 2(k)

n!
=

n−1∏
p=1

(
1 +

n

p
k

)
= (n(k + 1) − 1)!

(nk)!(n − 1)!
. (2)
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The desired boson images of b̂†n and b̂n are, respectively, d̂†
√

n!Fn(N̂) and
√

n!Fn(N̂)d̂ ,
where N̂ = d̂†d̂. Since

(0| 1√
(kn)!

b̂kn(b̂†b̂)
1√

(kn)!
b̂†kn|0) = n〈0| 1√

k!
d̂k(d̂†d̂)

1√
k!

d̂†k|0〉

the boson image of b̂†b̂ is nd̂†d̂. Summarizing, within the present framework we obtain the
following images:

b̂†n → d̂†
√

n!Fn(N̂) b̂n →
√

n!Fn(N̂)d̂ b̂†b̂ → nd̂†d̂. (3)

The Hamiltonian (1) is replaced by

Ĥ = ω(ĉ†ĉ + d̂†d̂) + G

(
ĉ†

√
Fn(N̂)d̂ + d̂†

√
Fn(N̂)ĉ

)
(4)

where G = √
n!g. Ĥ can be written as a sum of two parts which commute

Ĥ = 2ωσ̂ + GĈ 2σ̂ = ĉ†ĉ + d̂†d̂ Ĉ = ĉ†
√

Fn(N̂)d̂ + d̂†
√

Fn(N̂)ĉ.

In fact we have

[Ĥ , σ̂ ] = [Ĥ , Ĉ] = [Ĉ, σ̂ ] = 0.

3. The standard coherent state and the classical analogue

It is well known that the MYT boson expansion is the quantal analogue of a canonical
transformation. This analogy is very clear in the present example. The classical analogue of
Ĥ is the Hamiltonian

H(γ ∗, β∗, γ, β) = ωγ ∗γ + �β∗β + g(γ ∗βn + β∗nγ )

where (γ, i γ ∗) and (β, i β∗) are canonically conjugate pairs: i{γ, γ ∗} = 1, i{β, β∗} =
1, {γ, β} = 0, etc, and ω = n�. We observe that H(γ ∗, β∗, γ, β) is the expectation value of
Ĥ in the coherent state |γ, β〉 = exp(γ ĉ† + βb̂†)|0〉, where |0〉 is the boson vacuum

H(γ ∗, β∗, γ, β) = 〈γ, β|Ĥ |γ, β〉
〈γ, β|γ, β〉

〈γ, β|γ, β〉 = exp(γ ∗γ + β∗β).

In the following, by coherent state 1 (CSI) we mean the coherent state |C〉1 = |γ, β〉. In
order to obtain simple dynamical equations for our system, some transformations are now
introduced. The transformation

βn = nn/2δ(δ∗δ)(n−1)/2 βn∗ = nn/2δ∗(δ∗δ)(n−1)/2

is canonical and leads to the replacement of H(γ ∗, β∗, γ, β) by

H(γ ∗, δ∗, γ, δ) = ω(γ ∗γ + δ∗δ) + nn/2g(γ ∗δ + δ∗γ )(δ∗δ)(n−1)/2.

The subsequent replacement γ = √
p ei φ, δ = √

P ei � leads to

H(p, P, φ,�) = ω(p + P) + 2nn/2g cos(φ − �)
√

pP n. (5)

From the equations of motion it follows that

ṗ + ṗ = 0 φ̇ − �̇ = 2nn/2g cos(φ − �)
d

dp

√
pP n.
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The first equation is not surprising since nγ ∗γ + β∗β is a constant of motion. In the last
equation, we have taken into account the fact that P only depends on p, with dP/dp = −1.

Finally we obtain

p̈ = 2nng2 d

dp
(pP n) P = p0 − p. (6)

Let us now write, formally

ĉ† = eiφ̂
√

p̂ ĉ =
√

p̂ e−iφ̂ d̂† = ei�̂
√

P̂ d̂ =
√

P̂ e−i�̂.

Then, [�̂, P̂ ] = i implies [d̂, d̂†] = 1 and [φ̂, p̂] = i implies [ĉ, ĉ†] = 1. In terms of
�̂, P̂ , φ̂, p̂, Ĥ , equation (4) becomes

Ĥ = ω(p̂ + P̂ ) + G

[
eiφ̂

√
p̂Fn(P̂ )P̂ e−i�̂ + ei�̂

√
P̂ Fn(P̂ )p̂ e−iφ̂

]
.

In this form, Ĥ is analogous to H(p, P, φ,�), (5).

4. The generalized coherent state

We introduce the generalized coherent state

|C〉 = |V, v〉 = N exp[V d̂†(Fn(N̂))−1/2 + vĉ†]|0〉 (d̂|0〉 = ĉ|0〉 = 0) (7)

where V, V ∗, v, v∗ are variational parameters. The generalized coherent state is an eigenvector
of

√
Fn(N̂)d̂. It may be easily shown that√

Fn(N̂)d̂|C〉 = V |C〉. (8)

In the following, by coherent state 2 (CSII) we mean the coherent state |C〉2 = |V, v〉 defined
by equation (7). The normalization constant N , which ensures that 〈C|C〉 = 1, is easily
computed. We find

N−2 =
∞∑

k=0

∞∑
l=0

(V ∗V )k(v∗v)l

(k!)2Fn(0) · · · Fn(k − 1)(l!)2
〈0|d̂k ĉl ĉl†d̂k†|0〉

=
∞∑

k=0

∞∑
l=0

(V ∗V )k(v∗v)l

k!Fn(0) · · · Fn(k − 1)l!

=
∞∑

k=0

∞∑
l=0

(n!)k

(nk)!l!
(V ∗V )k(v∗v)l

where the obvious relation

Fn(0) · · · Fn(k) = (n(k + 1))!

(k + 1)!(n!)k+1

has been used. It is convenient to introduce the functions

Zn(V
∗V ) =

∑
k

(n!)k

(nk)!
(V ∗V )k

Gn(V
∗V ) =

∑
k(n!)kk(V ∗V )k−1((nk)!)−1∑

k (n!)k(V ∗V )k((nk)!)−1
= ∂ logZn

∂(V ∗V )

which are useful in the following discussion. For instance, the normalization constant is
given by

N−2 = Zn(V
∗V ) ev∗v.
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For n = 1 we recover the usual Glauber coherent state normalization, Z1 = exp(V ∗V ), while
for n = 2 we have Z2 = cosh

√
2V ∗V . We compute now the Lagrangian which determines

the time evolution of the complex variables V, v,

L = i

2
(〈C|Ċ〉 − 〈Ċ|C〉) − 〈C|Ĥ |C〉 (9)

where |Ċ〉 = ∂t |C〉, 〈Ċ| = ∂t 〈C|. We observe that

∂t (N−1|C〉) = [V̇ d̂†(Fn(N̂))−1/2 + v̇ĉ†] exp[V d̂†(Fn(N̂))−1/2 + vĉ†]|0〉.
Thus,
1

N
〈C|∂t

(
1

N
|C〉

)

=
∞∑

k=0

∞∑
l=0

(
V̇ v

(k − 1)!l!
+

V v̇

k!(l − 1)!

)
V ∗v∗(V ∗V )k−1(v∗v)l−1

k!Fn(0) · · · Fn(k − 1)l!
〈0|d̂k ĉl ĉl†d̂k†|0〉

=
∞∑

k=0

∞∑
l=0

(kV̇ v + lV v̇)
V ∗v∗(V ∗V )k−1(v∗v)l−1

k!Fn(0) · · · Fn(k − 1)l!

=
(

V ∗V̇
∂Zn

∂(V ∗V )
+ v∗v̇Zn

)
ev∗v

and

〈C|Ċ〉 − 〈Ċ|C〉 = (V ∗V̇ − V̇ ∗V )Z−1
n

∂Zn

∂(V ∗V )
+ (v∗V̇ − V̇ ∗v).

The computation of 〈C|Ĥ |C〉, where Ĥ is given by (4) follows a similar path, and uses
relation (8). The explicit expression of the Lagrangian (9) is finally obtained,

L = i

2
[(V ∗V̇ − V̇ ∗V )Gn(V

∗V ) + (v∗V̇ − V̇ ∗v)]

−ω(V ∗V Gn(V
∗V ) + v∗v) − G(V ∗v + v∗V ). (10)

We remark that V ∗V Gn(V
∗V ) + v∗v is a constant of motion. The equation of motion for

V ∗V Gn(V
∗V ) is easily derived and is analogous to the previously obtained equation of motion

for P. Indeed, let us write

v = √
ρ eiϕ V =

√
R ei�.

The coherent state |C〉 is a function of the variables ρ,R, ϕ,�, t . It is convenient to introduce
the notation

〈C|∂x |C〉 = 1
2 [〈C|(∂x |C〉) − (∂x〈C|)|C〉] x = ρ,R, ϕ,�, t.

We find

〈C|∂�|C〉 = RG(R) 〈C|∂R|C〉 = 0 〈C|∂ϕ|C〉 = ρ 〈C|∂ρ |C〉 = 0.

In terms of the variables ρ,R, ϕ,�, the Lagrangian reads

L = −(�̇RGn(R) + ϕ̇ρ) − ω(RG(R) + ρ) − 2G
√

Rρ cos(ϕ − �).

The equations of motion read

∂t (RGn(R)) − 2G
√

Rρ sin(ϕ − �) = 0

∂tρ + 2G
√

Rρ sin(ϕ − �) = 0

−�̇ − ω − G

√
ρ

R

dR

d(RGn(R))
cos(ϕ − �) = 0

−ϕ̇ − ω − G

√
R

ρ
cos(ϕ − �) = 0.
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From the equations of motion it follows that ρ + RGn(R) is conserved,

∂t [ρ + RGn(R)] = 0 ⇒ ρ + RGn(R) = const (11)

and that

�̇ − ϕ̇ − 2G
d

dρ

√
Rρ cos(� − ϕ) = 0

where we have used dR/d(RGn(R)) = −dR/dρ as follows from equation (11). Finally, we
have

∂2
t ρ = 2G2 d(Rρ)

dρ
(12)

analogously to the corresponding classical result (6).
The mean-field dynamical description of our model is sumarized by equation (12). By

mean-field dynamics we mean a dynamical description based on the assumption that, to a good
approximation, the time evolution of a coherent state wave packet proceeds along coherent
state wave packets. The dynamical evolution of the quantal state is then transferred to the time
dependence of the few parameters on which the coherent state depends. Mean-field dynamics
deviates from the exact quantal dynamics in two respects: (1) in the mean-field approach,
de-coherence effects are artificially suppressed; (2) quantum fluctuations associated with the
conservation of constants of motion are also neglected. Of course, (2) is a consequence of (1).
It is important to investigate when mean-field dynamics is valid and how reliable it is.

In our example, P̂ = 2σ̂ = c†c + d†d is a constant of motion which is only conserved
in the average by the coherent states considered. Quantum fluctuations associated with the
conservation of P̂ may be taken into account if modified coherent states which are themselves
eigenstates of this operator are used to describe the dynamics. Coherent states of the form

|C〉3 = N3 exp[V d̂†(Fn(N̂))−1/2ĉ]ĉ†2σ |0〉 (13)

or

|C〉4 = N4 exp[V d̂†ĉ]ĉ†2σ |0〉
are eigenstates of P̂ . They belong to the eigenspaces of P̂ , which are subspaces spanned by
the state vectors

|nc, nd〉 nc = 0, 1, . . . , 2σ nd = 0, 1, . . . , 2σ nc + nd = 2σ.

It is particularly interesting to investigate the validity of the approximate dynamics constrained
to these new types of states, since an improvement is expected with respect to the previously
considered types. In the following, by coherent states 3, 4 (CSIII and CSIV) we mean,
respectively, the coherent states |C〉3, |C〉4. The coherent state 4 is the SU(2) coherent
state [9].

5. Deformed bosons

Let us introduce the generalized deformed oscillator [3–5] which is defined in terms of the

algebra generated by the operators (1, d̂
′
, d̂

′†
, N̂) and of the structure function

�n(x) ≡ [x] = Fn(x − 1)x Fn(x) =
n−1∏
p=1

(
1 +

n

p
x

)
(14)

according with

d̂
′† = d̂

†
√

Fn(N̂) d̂
′ =

√
Fn(N̂)d̂ N̂ = �−1

n (d̂
′†
d̂

′
) (15)
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where [d̂, d̂†] = 1, N̂ = d̂†d̂. The function Fn(x) is the same which was defined in section 2
by equation (2). Then we have

d̂
′†
d̂

′ = Fn(N̂ − 1)N̂ = [N̂ ] d̂
′
d̂

′† = Fn(N̂)(N̂ + 1) = [N̂ + 1]

[d̂
′†
, N̂ ] = −d̂

′†
[d̂

′
, N̂ ] = d̂

′ (16)

[d̂
′
, d̂

′†
] = [N̂ + 1] − [N̂ ]. (17)

In terms of the deformed boson d̂
′
and the normal boson ĉ the Hamiltonian reads

Ĥ = ω(ĉ†ĉ + N̂) + g(d̂
′†
ĉ + ĉ†d̂

′
).

The operator 2σ̂ = ĉ†ĉ + N̂ is a constant of motion, [σ̂ , Ĥ ] = 0.
We now introduce the coherent state

|v, V 〉 = N exp�(V d̂
′†
) exp(vĉ†)|0〉 (18)

where the deformed exponential is defined as

exp�(x) =
∞∑

k=0

xk

[k]!

where [k]! = [k][k − 1] · · · [1], and [x] is defined as in equation (14). It is clear that |0〉
satisfies d̂

′|0〉 = ĉ|0〉 = 0 and |v, V 〉 is an eigenstate of the annihilation operator d̂
′
,

d̂
′|v, V 〉 = V |v, V 〉.

The coherent state (18) is just a different way of writing the coherent state (7). Then we have
for H = 〈v, V |Ĥ |v, V 〉

H = ω(V ∗V Gn(V
∗V ) + v∗v) + G(V ∗v + v∗V )

which corresponds to the last two terms of (10).

6. Time evolution

The time evolution of the system is determined from the action principle [11]

δ

∫
〈C|ih̄∂t − Ĥ |C〉dt = 0. (19)

If |C〉 is free from any constraint, equation (19) leads to the exact time evolution. If not,
equation (19) leads to the ‘best’ time evolution compatible with the imposed constraint. Here,
and in the following, |C〉 is any of the coherent states introduced above. For CSII, it is also
instructive to consider the equations of motion obtained when the pairs of variables (�,R)

and (ϕ, ρ) are replaced by the pairs of canonical variables (φ, σ ) and (χ, ν), defined in terms
of the old variables (V , V ∗), (v, v∗) by

V = i
√

R exp(−iχ) exp(−iφ/2) v = √
ρ exp(−iφ/2)

and

σ = 1
2 〈C|ĉ†ĉ + d̂†d̂|C〉 = RG(R) + ρ ν = RG(R).

We obtain

〈C|i∂φ|C〉 = σ 〈C|i∂σ |C〉 = 0 〈C|i∂χ |C〉 = ν 〈C|i∂ν |C〉 = 0.

In terms of the new variables we have

H = 〈C|H |C〉 = 2ωσ + 2G

√
ν

L(ν)

√
2σ − ν sin χ
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where L(ν) = G[R(ν)]. From the equations of motion we get

ν̇ = −2G

√
ν

L(ν)

√
2σ − ν cos χ.

Using the total energy E to eliminate χ we obtain the equation which determines the time
evolution of the system in the present approach

ν̇2 = 4G2 ν

L(ν)
(2σ − ν) − (E − 2ωσ)2. (20)

For the coherent states CSIII and IV, which preserve the number of particles, we introduce
the new pair of canonical variables (ν, χ) such that V = i

√
R(ν) exp(−iχ) and get for the

energy and equation of motion for ν, respectively,

H = 2ωσ + 2σG
√

RFi (
√

R) sin χ i = III, IV

and

ν̇2 = 16G2σ 2F2
i (

√
R) − (E − 2ωσ)2

where

FIII(
√

R) =
2σ−1∑
n=0

Rn (2σ − 1)!

n!(2σ − 1 − n)![n − 1]!
FIV(

√
R) =

2σ−1∑
n=0

Rn (2σ − 1)!
√

F(n)

n!(2σ − 1 − n)!
.

7. Numerical results and conclusions

The reliability of the time evolution predicted by coherent states has been investigated
numerically in a two-boson schematic model by comparing the coherent state dynamics
with the exact one.

Recalling that σ̂ is a constant of motion, we have considered systems characterized by
different values of 〈2σ̂ 〉 = 〈ĉ†ĉ〉 + 〈d̂†d̂〉 = 2, 10, 20. The results for the phonon multiplicities
n = 2 and n = 4 are given, respectively, in figures 1 and 2. Time is measured in units of
(g−1). For t = 0 the system is described by an appropriate coherent state with 〈ĉ†ĉ〉 = 2σ

and 〈d̂†d̂〉 = 0. This is the initial condition. The exact time evolution, which is obtained when
the coherent state constraint is relaxed for t > 0, is represented by the solid lines. The dotted,
small-dashed, long-dashed and dash-dotted lines represent the constrained time evolutions
for the coherent states CSI, CSII, CSIII and CSIV, respectively. The exact results exhibit a
noticeable loss of coherence, especially for larger 2σ values. We observe that there are no
instants for which the exact time evolution of the expectation value 〈ĉ†ĉ〉 vanishes and for
n = 2 it does not even recover the initial value 2σ = 10 or 20 . This behaviour is apparently in
strong contrast with the constrained time evolution for coherent states. Contrary to the exact
time evolution, the coherent state dynamics leads to an oscillatory behaviour between the
initial value 2σ and zero. In this case, 〈ĉ†ĉ〉 vanishes periodically. However, the length of time
spent close to zero is much shorter than the length of time spent close to the maximum.
The difference between the exact and constrained dynamics is not too pronounced and
the time averages of the corresponding time evolutions are in qualitative agreement, except
for the CSI coherent state. In table 1 the time average of the number of bosons c is given for
coherent states CSII, CSIII, CSIV. For the exact value we have taken the average over several
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Figure 1. Time evolution of the average number of bosons ĉ for n = 2 and 2σ = 2, 10, 20. The
initial condition is 〈ĉ†ĉ〉 = 2σ and 〈d̂†d̂〉 = 0.

Table 1. Time-averaged value of 〈c†c〉.
n = 2 n = 4

2σ 2 10 20 2 10 20

CSII 1.18 6.81 14.23 1.50 9.22 19.10
CSIII 1.15 6.79 14.21 1.44 9.19 19.08
CSIV 1.14 6.70 14.07 1.42 9.09 18.93
Exact 1.31 7.16 14.88 1.91 9.82 19.79

periods, since it has some small fluctuations. The period of the revivals is given in table 2.
Except for 2σ = 2, the period of the revivals is shorter than that obtained with the coherent
states. For n = 4, CSII and CSIII give a period which is almost twice as large as the exact
value. The performance of the CSI state is not acceptable: it neither describes the period nor
the behaviour at instants for which 〈ĉ†ĉ〉 is close to its maximum value. We only show it in
the figures for 2σ = 10, 20 and n = 2 (dotted line). Close to the instant for which 〈ĉ†ĉ〉
attains its maximum value, the remaining three coherent states (CSII, CSIII, CSIV) behave
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Figure 2. Time evolution of the number of bosons for n = 4 and 2σ = 2, 10, 20.

Table 2. Period T for n = 2 and n = 4 calculated with different coherent states and particle
numbers.

2σ 2 10 20

n = 2
CSII 2.257 1.380 1.087
CSIII 2.425 1.390 1.095
CSIV 2.370 1.340 1.055
Exact 2.222 1.522 1.221

n = 4
CSII 1.489 0.628 0.438
CSIII 1.662 0.634 0.432
CSIV 1.285 0.42 0.285
Exact (2T ) 1.48 0.670 0.46
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very similarly, describing reasonably well the decay of the initial state. For 2σ = 10, 20
coherent states CSII and III are equivalent. For n = 4 and 2σ = 20 we only represent CSII,
because, as can be seen from tables 1 and 2, both the time average and period are almost
equal. The performonce of CSIV is not as good as the one of CSII and CSIII. In general, the
generalized coherent states which depend nonlineraly on the particle number behave better.

The coherent state CSII only conserves in the average the constant of motion σ̂ . In spite
of this fact, its performance is not inferior to the other coherent states. In fact for 2σ = 2,
when the differences between CSII and CSIII are greater, it seems to work better than CSIII.
However, we have noted that CSII is giving poor results when static properties, such as the
ground-state energy are calculated [13].

It would be nice to understand when does the coherent state description break down, how
to implement de-coherence effects, and why, for n = 4, the coherent state description leads to
a period of oscillations which is twice the true one.
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